Mitzu vs. Posthog

Compare Mitzu vs. PostHog: warehouse-native vs. open-source analytics. Find the best fit for your team’s data, privacy, and scale needs.
Ambrus Pethes
October 6, 2025
5 min read
Share this post
Clickhouse and Mitzu warehouse-native integration
Overview
Subscribe to our newsletter
Join 1000+ Data and Analytics professionals staying up-to-date with Mitzu's newsletter.
Thank you! You have been subscribed!
Oops! Something went wrong while submitting the form.

The difference between Mitzu and Posthog

1. Introduction

Picking the right analytics tool matters for understanding your users and how your product is doing.

Mitzu is the leading warehouse-native analytics solution for companies that require full control over their data. It integrates directly with your data warehouse, eliminating the need for additional tools and reducing infrastructure costs. With Mitzu, you can scale your analytics capabilities alongside your data volume, ensuring cost efficiency and flexibility.

PostHog is an open-source, developer-centric suite that offers instant autocapture, real-time dashboards, and additional features like session replay and feature flags. Designed for technical teams, PostHog supports self-hosting, allowing for customization and scalability.

This guide looks at the main differences, data access, and privacy so you can choose what works best for your team.

2. Generic comparison

Feature Mitzu PostHog
Event tracking model Warehouse-native; schema equals table schema; supports custom, nested props, and joins Event-based; autocapture; retroactive event labeling; simple tagging
Data retention Unlimited (as per warehouse storage) Unlimited, based on your hosting choice
Real-time reporting Real-time SQL analytics from warehouse Real-time UI; instant event updates
Custom dimensions Unlimited props; nested JSON; arrays; complex types Unlimited events/props; action definition after event capture
Insights access UI & API; embeddable dashboards; direct warehouse access UI dashboards; API; custom widgets; session replay; feature flags
Attribution In-built funnel models; flexible joins; custom attribution Funnels; retention; path analysis; no ad ecosystem tie-in
Integrations Native data warehouse; CSV exports; BI; Notion/Miro; writebacks SDKs (JS, Python); cloud; webhooks; session replay; feedback tools
Data ownership Full control; data never leaves your warehouse; supports self-host Full control if self-hosted; data stored in PostHog infra if cloud
Pricing Seat-based Usage-based (events, recordings); open-source free option

3. Feature comparison

Core features

Core Feature Mitzu PostHog
Segmentation ★★★★☆ ★★★★☆
Funnels ★★★★☆ ★★★★☆
Retention ★★★★☆ Flexible, cohort, day-based, enterprise scale ★★★★☆ Retention reports, cohort explorer
Journeys / Paths ★★★☆☆ Visual pathing, filters, time windows ★★★★☆ Path, flow, session replays
Dynamic Cohorts ★★★★☆ SQL/UI, unlimited, enriched via joins ★★★☆☆ UI cohort builder, retroactive
User Lookup / Sessions ★★★☆☆ Drill-down by user/session/event ★★★★★ Instant lookup, replay, filters
B2B / Account Analytics ★★★★☆ Join to accounts/orgs, custom schemas ★★☆☆☆ No native B2B schema—possible with custom setup

Mitzu dashboards

Dashboards are fully customizable with drag-and-drop, no-code interfaces with auto-generated SQL. It is embeddable in Notion or Miro, and exportable as needed. Real-time, always powered by live warehouse data, results no extracts, no lag.

Posthog dashboards

Dashboards are interactive and modular, with support for visual builders and code-based customization. Technical users can build and share custom dashboards; non-technical users benefit from templates and guided workflows.

4. Event Tracking & Schema

Mitzu

Event tracking is available with 3rd-party solutions like Snowplow / RudderStack or similar solutions.

Notes:

Posthog

  • Provides instant autocapture on web/app events with a lightweight JS SDK or backend libraries.
  • Users can add custom events and retroactively define event labels ("actions") through the UI.
  • Event structure tends to be flatter; while extra properties can be attached, deep warehouse-level enrichment is not automated.
  • Schema modifications and data modeling are limited
  • Developers can send events via API or SDK and edit tracked properties post-factum

5. Data exports

Mitzu

Mitzu’s exports ensure data stays in your data warehouse with no duplication or movement.

  • CSV Exports: Download query results directly from the Mitzu UI in CSV format for quick sharing or offline analysis.
  • Data Writebacks (Work in Progress):

Mitzu can write data back into your data warehouse by creating Views based on your queries. These views stay synced and always reflect the latest data.

  • Data warehouse connections: Google BigQuery, Snowflake, Amazon Redshift, Databricks, Microsoft Fabric, ClickHouse, Starburst, Amazon Athena, PostgreSQL

Posthog

  • Provides exports through the UI, API endpoints, and direct integrations.
  • Data can be exported as CSV, via plugins, or streamed to third-party destinations.
  • Not natively coupled to data warehouses, but supports custom integrations for export/import (e.g., S3, BigQuery plugins).
  • More reliant on plugin/API workflows; not all exports are in real-time at large scale.

6. Privacy, security & compliance

Mitzu

  • Data remains in your data warehouse or data lakes, therefore, no data leaves your data stack.
  • Supports encryption at rest/in transit, column-level masking, customizable access roles, and audit trails.
  • Self-hosting capabilities are present. You can deploy Mitzu in your own cloud environment.
  • Designed for strictest requirements in healthcare, fintech, gaming and heavily regulated data teams.

PostHog

  • Open source and can be fully self-hosted, you can operate on their own infra to satisfy compliance.
  • Major security certifications (e.g., SOC 2).
  • Adopts industry standards for event retention, audit logging, authentication, and GDPR/HIPAA compliance.
  • Privacy controls depend on how the platform is hosted, public cloud vs. private/on-prem.

7. Use cases & suitability

Scenario / Need PostHog Mitzu
Small site/blog Easy, free, instant setup; autocapture; session replay Overkill; built for large-scale data teams
Large SaaS/B2B product Quick start; feature flags; session replay; funnels Built for product analytics, advanced cohort analytics, funnels, and retention
High data complexity Handles volume but not natively warehouse-based Unlimited scale; native warehouse handling; full SQL, no sampling
BI/ML integration Possible via API/export; less direct Native, use the same warehouse for BI, ETL, CDP or reverse ETL
Data team with SQL skills API/SQL possible; focus on fast developer usage Full SQL-native; ad hoc analysis; custom joins
Privacy & compliance focus On-prem available; strong privacy if self-hosted Nothing leaves the warehouse, no data sharing; 100% privacy and compliance friendly
Marketing attribution Funnels; retention; built-in experiments Custom models; attribution beyond marketing
Non-technical access UI easy for quick overviews and experiments Drag/drop; full no-code dashboard builder

8. Conclusion & recommendations

  • Choose Posthog if:
    • Product or engineering teams want open-source, instant analytics, flexible autocapture, session replay, feature flags, or A/B testing, and rapid experimentation.
    • Your company prefers a developer-first approach and needs full-stack analytics, but not direct warehouse-native integration.
  • Choose Mitzu if:
    • Data quality, privacy, and 100% control are paramount (e.g., healthcare, fintech, enterprise SaaS).
    • You require advanced segmentation, funnel, and retention analysis at any historical scale.
    • Product teams and data engineers need granular access to every tracked event for BI, ML, or compliance.
    • You want to leverage your warehouse as the analytics source of truth, avoiding data movement/silos.

Unbeatable solution for all of your analytics needs

Get started with Mitzu for free and power your teams with data!

How to get started?

Collect data

Ingest your first and third party data to your data warehouse. If you don't yet have a data warehouse we can help you get started.

Setup Mitzu

Connect Mitzu to your data warehouse just as any other BI tool. List your facts and dimensions tables.
Create an events and properties catalog.

Start making better decisions faster

Start learning valuable insights with a few clicks only. No need to know SQL. Collaborate with your team on key business questions.